An Opinion Regarding Equivalence Testing for Evaluating Measurement Agreement

Main Article Content

Manolis Adamakis

Abstract

The novel statistical approach ‘equivalence testing’ has been proposed in order to statistically examine agreement between different physical activity measures. By using this method, researchers argued that it is possible to determine whether a method is significantly equivalent to another method. Recently, equivalence testing was supported with the use of 90% confidence interval, obtained from a mixed ANOVA, which I believe is a more robust approach. This paper further discusses the use of this method in comparison to a more well-established statistical analysis (i.e. mixed design ANOVA), as well as various limitations and arbitrary assumptions in order to perform this analysis. The paper concludes with some remarks and considerations for future use in similar approaches.

Keywords:
Mixed design ANOVA, p-value, confidence interval; methods’ comparison.

Article Details

How to Cite
Adamakis, M. (2019). An Opinion Regarding Equivalence Testing for Evaluating Measurement Agreement. Journal of Scientific Research and Reports, 24(5), 1-4. https://doi.org/10.9734/jsrr/2019/v24i530163
Section
Opinion Article

References

Lee JM, Kim Y, Welk GJ. Validity of consumer-based physical activity monitors. Med Sci Sports Exerc. 2014;46(9):1840-48.
DOI:10.1249/MSS.0000000000000287

Florez-Pregonero A, Meckes N, Buman M, Ainsworth. Wearable monitors criterion validity for energy expenditure in sedentary and light activities. J Sport Health Sci. 2017;6(1):103-10.
DOI:10.1016/j.jshs.2016.10.005

Kim Y, Welk GJ. Criterion validity of competing accelerometry-based activity monitoring devices. Med Sci Sports Exerc. 2015;47(11):2456-63.
DOI:10.1249/MSS.0000000000000691

Morris CE, Wessel PA, Tinius RA, Schafer MA, Maples JM. Validity of activity trackers in estimating energy expenditure during high-intensity functional training. Res Q Exercise Sport; 2019. [Epub ahead of print].
DOI:10.1080/02701367.2019.1603989

Baker M. Statisticians issue warning over misuse of P values. Nature. 2016;531 (7593):151. DOI:10.1038/nature.2016.19503

Wasserstein RL, Lazar NA. The ASA's statement on p-values: Context, process, and purpose. Am Stat. 2016;70(2):129-33.
DOI:10.1080/00031305.2016.1154108

Yaddanapudi LN. The American Statistical Association statement on p-values explained. J Anaesthesiol Clin Pharmacol. 2016;32(4):421-423.
DOI:10.4103/0970-9185.194772

Startz R. Not p-Values, Said a little bit differently. Econometrics. 2019;7(1):11.
DOI:10.3390/econometrics7010011

Dixon PM, Saint-Maurice PF, Kim Y, Hibbing P, Bai Y, Welk GJ. A primer on the use of equivalence testing for evaluating measurement agreement. Med Sci Sports Exerc. 2018;50(4):837-45.
DOI:10.1249/MSS.0000000000001481

Tabachnick BG, Fidell LS. Using multivariate statistics. 5th ed. Boston, MA: Allyn & Bacon; 2007.

Rencher AC. Methods of multivariate analysis. 2nd ed. New York, ny: John Wiley & Sons, Inc; 2002.

Park E, Cho M, K, CS. Correct use of repeated measures analysis of variance. Korean J Lab Med. 2009;29:1-9.
DOI:10.3343/kjlm.2009.29.1.1

Welk GJ, McClain J, Ainsworth BE. Protocols for evaluating equivalency of accelerometry-based activity monitors. Med Sci Sports Exerc. 2012;44(Suppl1): S39-49. DOI:10.1249/MSS.0b013e3182399d8f

Mascha EJ, Sessler DI. Equivalence and noninferiority testing in regression models and repeated-measures designs. Anesth Analg. 2011;112(3):678-687.
DOI:10.1213/ANE.0b013e318206f872

Lakens D, Scheel AM, Isager PM. Equivalence testing for psychological research: A tutorial. AMPPS. 2018;1(2): 259-269.
DOI:10.1177/2515245918770963

Lakens D. Equivalence tests: A practical primer for t-tests, correlations and meta-analyses. Soc Psychol Pers Sci. 2017; 8(4):355-62.
DOI:10.1177/1948550617697177