Adsorbents for Noxious Gas Sequestration: State of the Art

Main Article Content

V. J. Aimikhe
O. E. Eyankware

Abstract

Adsorbents such as metal-organic frameworks (MOFs), polymers, activated carbon (AC), and membranes are becoming prominent for CO2, SO2, H2S and NH3 capture and in some cases, storage. Using the standard adsorbent properties (SAPs) such as adsorption capacity, selectivity, permeability/permeance, regenerability and reusability, ease of functionability and tunability, thermal and chemical stability, suitable candidates for noxious gas sequestration can be determined. To foster the development and selection of a more efficient adsorbent, proper documentation of adsorbent performance in terms of SAPs is crucial. In this study, a critical review of metal-organic framework (MOF), polymer, activated carbon (AC) and membrane adsorbents was performed. Using the SAPs, an up to date comparative analysis was done to select the best performing adsorbents. The results of the comparative analysis were then used to categorize the adsorbents' suitability for pre-combustion and post-combustion applications. A perspective of future study on adsorbents for noxious gas sequestration was also presented.

Keywords:
Sequestration, adsorbent, metal-organic framework, polymer, activated carbon, membrane, noxious gases.

Article Details

How to Cite
Aimikhe, V. J., & Eyankware, O. E. (2019). Adsorbents for Noxious Gas Sequestration: State of the Art. Journal of Scientific Research and Reports, 25(1), 1-21. https://doi.org/10.9734/jsrr/2019/v25i1-230176
Section
Review Article

References

BP, BP Energy Outlook 2040; 2019.

Available:https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=
web&cd=1&cad=rja&uact=
8&ved=2ahUKEwjwxK_MhunjAhXFnFwKHa9nAaIQFjAAegQIABAC&url=
https%3A%2F%2Fwww.bp.com%2Fcontent%2Fdam%2Fbp%2Fbusiness-sites%2Fen%2Fglobal%2Fcorporate%2Fxlsx%2Fenergy-economics%2Fenerg.

BP, BP Statistical Review of World Energy, 66th ed.; 2017.

BP, BP Statistical Review of World Energy, 67th ed.; 2018.

BP, BP Statistical Review of World Energy. 68th ed.; 2019.
Available:bp.com/statisticalreview.

BP, BP-stats-review-2019-all-data; 2019. bp-stats-review-2019-all-data.xlsx.

Sadeghian MM. Negative environmental impacts of tourism. A Brief Review. 2019; 71–76.

Yan W, Zhou Y. Science of the total environment the presence of ferrihydrite enhances greenhouse gas-methane emission in the environment, Sci. Total Environ. 2019;688:462–469.
DOI:10.1016/j.scitotenv.2019.06.234

Vellingiri K, Deep A, Kim KH. Metal-organic frameworks as a potential platform for selective treatment of gaseous sulfur compounds. ACS Appl. Mater. Interfaces. 2016;8:29835–29857. DOI:10.1021/acsami.6b10482

Tsai W. Toxic volatile organic compounds (vocs) in the atmospheric environment : Regulatory aspects and monitoring in Japan and Korea; 2016.
DOI:10.3390/environments3030023

Balali-Mood M, Riahi-Zanjani B, Ghorami-Azam A. Effects of air pollution on human health and practical measures for prevention in Iran, J Res Med Sci; 2016.
DOI:10.4103/1735-1995.189646

Wang S, Shao L, Sang Y, Huang J. Hollow hyper-cross-linked polymer microspheres for efficient rhodamine B adsorption and CO2 capture, J. Chem. Eng. Data. 2019; 64:1662–1670. DOI:10.1021/acs.jced.8b01197

Taylor P, Le Cloirec P. Visualization of the exothermal VOC adsorption in a fixed-bed activated carbon adsorber, (n.d.); 2015; 37–41.

Li L, I Da Silva, Kolokolov DI, Han X, Li J, Smith G, Cheng Y, Daemen LL, Morris CG, Godfrey HGW, Jacques NM, Zhang X, Manuel P, Frogley MD, Murray CA, Ramirez-Cuesta AJ, Cinque G, Tang CC, Stepanov AG, Yang S, Schroder M. Post-synthetic modulation of the charge distribution in a metal-organic framework for optimal binding of carbon dioxide and sulfur dioxide, Chem. Sci. 2019;10:1472–1482.
DOI:10.1039/c8sc01959b

Sánchez-González E, Mileo PGM, Sagastuy-Breña M, Álvarez JR, Reynolds JE, Villarreal A, Gutiérrez-Alejandre A, Ramírez J, Balmaseda J, González-Zamora E, Maurin G, Humphrey SM, Ibarra IA. Highly reversible sorption of H2S and CO2 by an environmentally friendly Mg-based MOF, J. Mater. Chem. A. 2018; 6:16900–16909.
DOI:10.1039/c8ta05400b

Bera R, Ansari M, Alam A, Das N. Triptycene, Phenolic-OH and Azo-functionalized porous organic polymers: Efficient and selective co2 capture. ACS Appl. Polym. Mater. 2019;1:959–968.
DOI:10.1021/acsapm.8b00264

Abu Ghalia M, Dahman Y. Development and evaluation of zeolites and metal–organic frameworks for carbon dioxide separation and capture. Energy Technol. 2017;5:356–372. DOI:10.1002/ente.201600359

Kentish S. Embedded enzymes catalyse capture, Nat. Energy. 2018:3: 359–360.
DOI:10.1038/s41560-018-0146-8

Buyukcakir O, Yuksel R, Jiang Y, Lee SH, Seong WK, Chen X, Ruoff RS. Synthesis of porous covalent quinazoline networks (cqns) and their gas sorption properties. Angew. Chemie - Int. Ed. 2019;58:872–876.
DOI:10.1002/anie.201813075

Kang M, Kang DW, Hong CS. Post-synthetic diamine-functionalization of MOF-74 type frameworks for effective carbon dioxide separation, Dalt. Trans. 2019;48:2263–2270. DOI:10.1039/c8dt04339f

Dawson R, Cooper I, Adams DJ. Chemical functionalization strategies for carbon dioxide capture in microporous organic polymers; 2013.
DOI:10.1002/pi.4407

Olajire AA. Synthesis chemistry of metal-organic frameworks for CO2capture and conversion for sustainable energy future, Renew. Sustain. Energy Rev. 2018;92: 570–607.
DOI:10.1016/j.rser.2018.04.073

Gray ML, Champagne KJ, Fauth D, Baltrus JP, Pennline H. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. 2012;2: 3–8.
DOI:10.1016/S1750-5836(07)00088-6

George G, Bhoria N, Alhallaq S, Abdala A, Mittal V. Polymer membranes for acid gas removal from natural gas, Sep. Purif. Technol. 2016;158:333–356.
DOI:10.1016/j.seppur.2015.12.033

Zou L, Sun Y, Che S, Yang X, Wang X, Bosch M, Wang Q, Li H, Smith M, Yuan S, Perry Z, Zhou HC. Porous organic polymers for post-combustion carbon capture, Adv. Mater. 2017;29.
DOI:10.1002/adma.201700229

Li B, Ma CY. SO2 removal by powder activated carbon in a drop tube furnace experimental system. Key Eng. Mater. 2018;783:34–40. DOI:10.4028/www.scientific.net/kem.783.34

Li M, Xiao R. Preparation of a dual Pore structure activated carbon from rice husk char as an adsorbent for CO2 capture. Fuel Process. Technol. 2019;783:35–39.
DOI:10.1016/j.fuproc.2018.12.015

Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks, Chem. Rev. 2012;112:673–674. DOI:10.1021/cr300014x

Furukawa H, Cordova KE, M O’Keeffe, Yaghi OM. The chemistry and applications of metal-organic frameworks, Science. 2013;80:341.
DOI:10.1126/science.1230444

UM, Czaja AU, Trukan N. Industrial applications of metal–organic frameworks, Chem. Soc. Rev. 2009;38:1284–1293.
DOI:10.1039/b804680h

Li Y, Zou B, Xiao A, Zhang H. Advances of metal-organic frameworks in energy and environmental applications, Chinese J. Chem. 2017;35:1501–1511.
DOI:10.1002/cjoc.201700151

Zhao X, Wang Y, Li DS, Bu X, Feng P. Metal–organic frameworks for separation. Adv. Mater. 2018;30.
DOI:10.1002/adma.201705189

Li J, Ma Y, Mccarthy MC, Sculley J, Yu J, Jeong H, Balbuena PB, Zhou H. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks, Coord. Chem. Rev. 2011;255:1791–1823.
DOI:10.1016/j.ccr.2011.02.012

He Y, Zhou W, Qian G, Chen B. Methane storage in metal–organic frameworks, Chem. Soc. Rev. 2014;43:5657–5678.
DOI:10.1039/c4cs00032c

Caskey SR, Wong-Foy AG, Matzger AJ. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 2008;130:10870–10871.
DOI:10.1021/ja8036096

Kumar P, Kim KH, Kwon EE, Szulejko JE. Metal-organic frameworks for the control and management of air quality: Advances and future direction, J. Mater. Chem. A. 2015;4:345–361.
DOI:10.1039/c5ta07068f

Kim KC. Design strategies for metal-organic frameworks selectively capturing harmful gases, J. Organomet. Chem. 2018;854:94–105. DOI:10.1016/j.jorganchem.2017.11.017

Feng S, Li X, Zhao S, Hu Y, Zhong Z, Xing W, Wang H. Multifunctional metal organic framework and carbon nanotube-modified filter for combined ultrafine dust capture and SO2 dynamic adsorption, Environ. Sci. Nano. 2018;5:3023–3031.
DOI:10.1039/c8en01084f

Antwi-Baah R, Liu H. Recent hydrophobic metal-organic frameworks and their applications, Materials (Basel). 2018;11.
DOI:10.3390/ma11112250

Han X, Yang S, Schröder M. Porous metal–organic frameworks as emerging sorbents for clean air, Nat. Rev. Chem. 2019;3:108–118.
DOI:10.1038/s41570-019-0073-7

Hu T, Zhao Q, Huo L, Gao L, Zhang J, Wang X, Fan L. Two lanthanide metal-organic frameworks constructed from tris(4-carboxyphenyl)phosphane oxide with gas adsorption and magnetic properties. Cryst Eng Comm. 2018;20:4291–4296.
DOI:10.1039/c8ce00661j

D’Amato R, Donnadio A, Carta M, Sangregorio C, Tiana D, Vivani R, Taddei M, Costantino F. Water-based synthesis and enhanced CO2 capture performance of perfluorinated cerium-based metal-organic frameworks with uio-66 and mil-140 topology, ACS Sustain. Chem. Eng. 2019; 7:394–402. DOI:10.1021/acssuschemeng.8b03765

Zhang Y, Zhang P, Yu W, Zhang J, Huang J, Wang J, Xu M, Deng Q, Zeng Z, Deng S. Highly Selective and reversible sulfur dioxide adsorption on a microporous metal-organic framework via polar sites. ACS Appl. Mater. Interfaces. 2019;11: 10680–10688. DOI:10.1021/acsami.9b01423

Pokhrel J, Bhoria N, Wu C, Reddy KSK, Margetis H, Anastasiou S, George G, Mittal V, Romanos G, Karonis D, Karanikolos GN. Cu- and Zr-based metal organic frameworks and their composites with graphene oxide for the capture of acid gases at ambient temperature. J. Solid State Chem. 2018;266:233–243.
DOI:10.1016/j.jssc.2018.07.022

Wang Z, Luo X, Zheng B, Huang L, Hang C, Jiao Y, Cao X, Zeng W, Yun R. Highly selective carbon dioxide capture and cooperative catalysis of a water-stable acylamide-functionalized. Metal–Organic Framework, Eur. J. Inorg. Chem. 2018; 1309–1314.
DOI:10.1002/ejic.201701404

Li H, Wang K, Hu Z, Chen YP, Verdegaal W, Zhao D, Zhou HC. Harnessing solvent effects to integrate alkylamine into metal–organic frameworks for exceptionally high CO2 uptake, J. Mater. Chem. A. 2019;7: 7867–7874.
DOI:10.1039/C8TA11300A

Wen HM, Liao C, Li L, Alsalme A, Alothman Z, Krishna R, Wu H, Zhou W, Hu J, Chen B. A metal-organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture, J. Mater. Chem. A. 2019;7:3128–3134.
DOI:10.1039/c8ta11596f

Shalini S, Nandi S, Justin A, Maity R, Vaidhyanathan R. Potential of ultramicroporous metal-organic frameworks in CO2 clean-up, Chem. Commun. 2018;54:13472–13490.
DOI:10.1039/c8cc03233e

Ye Y, Ma Z, Chen L, Lin H, Lin Q, Liu L, Li Z, Chen S, Zhang Z, Xiang S. Microporous metal-organic frameworks with open metal sites and π-Lewis acidic pore surfaces for recovering ethylene from polyethylene off-gas, J. Mater. Chem. A. 2018;6:20822–20828.
DOI:10.1039/c8ta06923a

Wang Y, He M, Gao X, Long P, Zhang Y, Zhong H, Wang X, He Y. Three isoreticular ssa-type MOFs derived from bent diisophthalate ligands: Exploring the substituent effect on structural stabilities and selective C2H2/CH4 and CO2/CH4 adsorption properties, Dalt. Trans. 2018; 47:12702–12710.
DOI:10.1039/c8dt02686f

Pal A, Mitra A, Chand S, Bin Lin J, Das MC. Two 2D microporous MOFs based on bent carboxylates and a linear spacer for selective CO2 adsorption, CrystEngComm. 2019;21:535–543. DOI:10.1039/c8ce01925h

Liu Y, Liu S, Gonçalves AAS, Jaroniec M. Effect of metal-ligand ratio on the CO2 adsorption properties of Cu-BTC metal-organic frameworks, RSC Adv. 2018;8: 35551–35556.
DOI:10.1039/c8ra07774f

Lee WR, Jo H, Yang L, Lee H, Ryu DW, Lim KS, Song JH, Min DY, Han SS, Seo JG, Park YK, Moon D, Hong CS. Chemical science heterodiamine-grafted metal – organic framework †, Chem. Sci. 2015;1–9.
DOI:10.1039/C5SC01191D

Ye S, Jiang X, Ruan L, Liu B, Wang Y, Zhu J, Qiu L. Microporous and mesoporous materials post-combustion CO2 capture with the HKUST-1 and MIL-101 (Cr) metal – organic frameworks: Adsorption, separation and regeneration investigations, Microporous Mesoporous Mater. 2013;179: 191–197. DOI:10.1016/j.micromeso.2013.06.007

Wang A, Fan R, Pi X, Hao S, Zheng X, Yang Y. N-doped porous carbon derived by direct carbonization of metal-organic complexes crystal materials for so2 adsorption. Cryst. Growth Des. 2019; 19: 1973–1984.
DOI:10.1021/acs.cgd.8b01925

Zárate JA, Sánchez-González E, Williams DR, González-Zamora E, Martis V, Martínez A, Balmaseda J, Maurin G, Ibarra IA. High and energy-efficient reversible SO2 uptake by a robust Sc(iii)-based MOF, J. Mater. Chem. A; 2019.
DOI:10.1039/c9ta02585e

Glomb S, Woschko D, Makhlou G, Janiak C. Metal − organic frameworks with internal urea-functionalized dicarboxylate linkers for SO2 and NH3 Adsorption. 2017; 74:37419–37434. DOI:10.1021/acsami.7b10884

Zárate JA, Sánchez-González E, Jurado-Vázquez T, Gutiérrez-Alejandre A, González-Zamora E, Castillo I, Maurin G, Ibarra IA. Outstanding reversible H2S capture by an Al(iii)-based MOF, Chem. Commun. 2019;55:3049–3052.
DOI:10.1039/C8CC09379B

Jameh AA, Mohammadi T, Bakhtiari O, Mahdyarfar M. Synthesis and modification of Zeolitic imidazolate framework (ZIF-8) nanoparticles as highly efficient adsorbent for H2S and CO2 removal from natural gas, J. Environ. Chem. Eng. 2019;7.
DOI:10.1016/j.jece.2019.103058

Alivand MS, Shafiei-Alavijeh M, Tehrani NHMH, Ghasemy E, Rashidi A, Fakhraie S. Facile and high-yield synthesis of improved MIL-101(Cr) metal-organic framework with exceptional CO2 and H2S uptake; the impact of excess ligand-cluster, Microporous Mesoporous Mater. 2019;153–164. DOI:10.1016/j.micromeso.2018.12.033

He L, Nath JK, Lin Q. Robust multivariate metal-porphyrin frameworks for efficient ambient fixation of CO2 to cyclic carbonates, Chem. Commun. 2019;55: 412–415.
DOI:10.1039/c8cc07865c

Song X, Zhang M, Duan J, Bai J. Constructing and finely tuning the CO2 traps of stable and various-pore-containing MOFs towards highly selective CO2 capture, Chem. Commun. 2019;55:3477–3480.
DOI:10.1039/c8cc10116g

Nguyen HTD, Tran YBN, Nguyen HN, Nguyen TC, Gándara F, Nguyen PTK. A series of metal-organic frameworks for selective co2 capture and catalytic oxidative carboxylation of olefins. Inorg. Chem. 2018;57:13772–13782.
DOI:10.1021/acs.inorgchem.8b02293

Sun Y, Li K, Zhao J, Wang J, Tang N, Zhang D, Guan T, Jin Z. Nitrogen and sulfur co-doped microporous activated carbon macro-spheres for CO2 capture, J. Colloid Interface Sci. 2018;526:174–183.
DOI:10.1016/j.jcis.2018.04.101

Feng DD, Dong HM, Liu ZY, Zhao XJ, Yang EC. Three microporous metal-organic frameworks assembled from dodecanuclear {NiII6LnIII6} subunits: Synthesis, structure, gas adsorption and magnetism, Dalt. Trans. 2018;47:15344–15352.
DOI:10.1039/C8DT02816H

Zhang DS, Zhang YZ, Gao J, Liu HL, Hu H, Geng LL, Zhang X, Li YW. Structure modulation from unstable to stable MOFs by regulating secondary N-donor ligands, Dalt. Trans. 2018;47:14025–14032.
DOI:10.1039/c8dt02858c

Huang NY, Mo ZW, LJ Li, WJ Xu, HL Zhou, DD Zhou, PQ Liao, JP Zhang, XM Chen. Direct synthesis of an aliphatic amine functionalized metal-organic framework for efficient CO2 removal and CH4 purification, Cryst Eng Comm. 2018; 20:5969–5975.
DOI:10.1039/c8ce00574e

James AM, Derry MJ, Train JS, Dawson R. Dispersible microporous diblock copolymernanoparticlesviapolymerisation-inducedself-assembly, Polym. Chem. 2019;10:3879–3886. DOI:10.1039/c9py00596j

Dai Y, Li W, Chen Z, Zhu X, Liu J, Zhao R, Wright DS, Noori A, Mousavi MF, Zhang C. An air-stable electrochromic conjugated microporous polymer as an emerging electrode material for hybrid energy storage systems, J. Mater. Chem. A. 2019; 16397–16405.
DOI:10.1039/c9ta03001h

R Vinodh, CM Babu, A Abidov, M Palanichamy, WS Cha, HT Jang. Preparation and characterization of RGO-incorporated hypercross-linked polymers for CO2capture, Carbon Lett. 2019;29:21–30.
DOI:10.1007/s42823-019-00002-6

SLR, Pramanik NB. Layer-by-layer assembly of a polymer of intrinsic microporosity: Targeting the CO2/N2 separation problem. Chem. Commun; 2019.
DOI:10.1039/C9CC01535C

Olajire AA. CO2 capture and separation technologies for end-of-pipe applications - A review, Energy. 2010;35:2610–2628.
DOI:10.1016/j.energy.2010.02.030

Wu J, Xu F, Li S, Ma P, Zhang X, Liu Q, Fu R, Wu D. Porous polymers as multifunctional material platforms toward task-specific applications. Adv. Mater. 2019;31.
DOI:10.1002/adma.201802922

Sanz-Pérez ES, Rodríguez-Jardón L, Arencibia A, Sanz R, Iglesias M, Maya EM. Bromine pre-functionalized porous polyphenylenes: New platforms for one-step grafting and applications in reversible CO2 capture, J. CO2 Util. 2019;30:183–192.
DOI:10.1016/j.jcou.2019.02.005

Perego J, Piga D, Bracco S, Sozzani P, Comotti A. Expandable porous organic frameworks with built-in amino and hydroxyl functions for CO2 and CH4 capture, Chem. Commun. 2018;54:9321–9324.
DOI:10.1039/c8cc03951h

Puthiaraj P, Ravi S, Yu K, Ahn WS. CO2 adsorption and conversion into cyclic carbonates over a porous ZnBr 2 -grafted N-heterocyclic carbene-based aromatic polymer, Appl. Catal. B Environ. 2019; 195–205. DOI:10.1016/j.apcatb.2019.03.076

Bhanja P, Modak A, Bhaumik A. Porous organic polymers for co2 storage and conversion reactions. ChemCatChem. 2019;11:244–257. DOI:10.1002/cctc.201801046

Patel HA, Byun J, Yavuz CT. Carbon dioxide capture adsorbents: Chemistry and Methods, ChemSusChem. 2017;10:1303–1317.
DOI:10.1002/cssc.201601545

Liu X, Xu C, Yang X, He Y, Guo Z, Yan D. An amine functionalized carbazolic porous organic framework for selective adsorption of CO2 and C2H2 over CH4, Microporous Mesoporous Mater. 2019;275: 95–101.
DOI:10.1016/j.micromeso.2018.08.015

Rong M, Yang L, Wang L, Yu J, Qu H, Liu H. Fabrication of ultramicroporous triphenylamine-based polyaminal networks for low-pressure carbon dioxide capture, J. Colloid Interface Sci. 2019;548:265–274.
DOI:10.1016/j.jcis.2019.04.036

Nikhil AP, Malani SA, Babarao R. As featured in; 2017.
DOI:10.1039/c7ce01647f