Journal of Scientific Research and Reports

  • About
    • About the Journal
    • Submissions & Author Guideline
    • Accepted Papers
    • Editorial Policy
    • Editorial Board Members
    • Reviewers
    • Printed Hard copy
    • Subscription
    • Membership
    • Publication Ethics and Malpractice Statement
    • Digital Archiving
    • Contact
  • Archives
  • Indexing
  • Publication Charge
  • Submission
  • Testimonials
  • Announcements
Advanced Search
  1. Home
  2. Archives
  3. 2022 - Volume 28 [Issue 12]
  4. Original Research Article

Submit Manuscript


Subscription



  • Home Page
  • Author Guidelines
  • Editorial Board Member
  • Editorial Policy
  • Propose a Special Issue
  • Membership

The Strategies of Chromite Terrace in Sukinda Valley, India: An Appraisal

  • Siba Prasad Mishra
  • Arnada Samal
  • Mohammed Sohel
  • Kumar Ch. Sethi
  • Sanjeeb Kumar Patnaik

Journal of Scientific Research and Reports, Page 8-26
DOI: 10.9734/jsrr/2022/v28i121715
Published: 29 December 2022

  • View Article
  • Download
  • Cite
  • References
  • Statistics
  • Share

Abstract


Iron chrome oxide (FeCr 2O4), is a commercially viable and major ingredient of stainless steel. The Odisha state in India possesses 98% of the pre-Cambrian India’s Chromite ore deposits in Sukinda valley, Jajpur District.  To meet the present escalating demand for chromium in steel industries, it is urged to extract more chrome ore to satiate domestic needs. The depletion of chrome deposits, rise in demand, fewer chrome mines, and less conversion from tailings increase of more toxic hexavalent chrome ion level in the geo-bio hydrosphere, shall aggravate health concerns for the people, fauna, and flora in Sukinda Ultramafic Complex (SUC).


The present quest is a collection of chromite ores and tailings. A chemical study is done by using the X-ray fluorescent spectrometer. An insitu/GIS study of the Sukinda ultramafic complex by using Arc-GIS, and ERADAS software has been done to originate hydrology, aspect, and hill-shade map of the valley. The literature, and as an inhabitant of the area helped in preparing the strategic plan through Environmental Impact Assessment and Environmental Management Plan.  


CR (III) is a dietary requirement. The anthropogenic activities and atmospheric exposure have converted Cr (III) to Cr (VI) in SUC and have surpassed the recommended values. The noxious Cr (VI) in the geo-bio-hydrosphere shall invite health and environmental concerns in the future. The aboriginals of SUC are economically burdened with food insecurity, poor livelihood, health, and of formal societal values. The Sukinda Valley ore samples contain 50% chromite ore is economic. But the >7% of CR (III) ore in the tailings and overburden shall warrant the future expected exorbitant Cr (VI) in the geo-bio-hydro environment of Sukinda valley. 


Keywords:
  • Carcinogenic
  • EIA/EMP studies
  • geology
  • chromium mines
  • Sukinda Ultramafic Complex
  • hexavalent
  • Full Article - PDF
  • Review History

How to Cite

Mishra, S. P., Samal, A., Sohel, M., Sethi, K. C., & Patnaik, S. K. (2022). The Strategies of Chromite Terrace in Sukinda Valley, India: An Appraisal. Journal of Scientific Research and Reports, 28(12), 8-26. https://doi.org/10.9734/jsrr/2022/v28i121715
  • ACM
  • ACS
  • APA
  • ABNT
  • Chicago
  • Harvard
  • IEEE
  • MLA
  • Turabian
  • Vancouver

References

Orissa State Pollution Control Board (OSPCB). Report on environmental issues of chromite mining in Sukinda valley. Down to earth. 2008:1-11.

M/s Jindal Stainless Limited, 2018. Final EIA/EMP report for enhancement of chrome ore production from 0.1 MTPA to 0.215 MTPA for Jindal chromite mine, by Visiontek consultancy services Pvt. Ltd.

Nayak S, Ranga BS, Balasubramaniaym P, Kale P. A review of chromite mining in Sukinda valley of India: Impact and potential remediation measures. Int J. Phytoremediation. 2020;22(8):804-818. DOI: 10.1080/15226514.2020.1717432

Das AP, Singh S. Occupational health assessment of chromite toxicity among Indian miners. Indian J Occup Environ Med. 2011;15(1):6-13.

DOI: 10.4103/0019-5278.82998

Dhal B, Das NN, Thatoi HN, Pandey BD. Characterizing toxic Cr(VI) contamination in chromite mine overburden dump and its bacterial remediation. J Hazard Mater. 2013;260:141-9.

DOI: 10.1016/j.jhazmat.2013.04.050

Dhakate R, Singh VS, Hodlur GK. Impact assessment of chromite mining on groundwater through simulation modeling study in Sukinda chromite mining area, Orissa, India. J Hazard Mater. 2008; 30,160(2-3):535-47.

DOI: 10.1016/j.jhazmat.2008.03.053.

Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered. 2022;13(3): 4923-4938.

DOI: 10.1080/21655979.2022.2037273

Deng Y, Wang M, Tian T, Lin S, Xu P. Zhou L. et al. The effect of hexavalent chromium on the incidence and mortality of human cancers: a meta-analysis based on published epidemiological cohort studies. Front. Oncol. 2019;24.

DOI: 10.3389/fonc.2019.00024

Tumolo M, Ancona V, De Paola D, Losacco D, Campanale C, Massarelli C, Uricchio VF. Chromium pollution in European water, sources, health risk, and remediation strategies: An overview. International Journal of Environmental Research and Public Health. 2020;17(15): 5438.

Available:https://doi.org/10.3390/ijerph17155438

Piñeiro XF, Ave MT, Mallah N, et al. Heavy metal contamination in Peru: implications on children’s health. Sci Rep. 2021;11:22729.

Available:https://doi.org/10.1038/s41598-021-02163-9

Kumar S, Priyaranjan, BD, Dasgupta B, Nastaran Q., Kumar A. Oral health status and treatment needs of chromium mine workers in India. Indian J Occup Environ Med. 2022;26:172-7.

Dubey CS, Sahoo BK, Nayak NR. Chromium (VI) in waters in parts of Sukinda chromite valley and health hazards, Orissa, India. Bull. Environ. Contam. Toxicol. 2001;67:541–548.

DOI: 10.1007/s00128-001-0157-0

Kumari B, Tiwary RK, Srivastava KK. Physico-chemical analysis and correlation study of water resources of the Sukinda chromite mining area, Odisha, India. Mine Water Environ. 2017;36:356–362.

Available:https://doi.org/10.1007/s10230-016-0409-1

Mallick T, Mishra SP, Nayak Sipalin, Siddique M. Part substitute of river sand by Ferrochrome slag in cement concrete: Industrial waste disposal. Journal of Xidian University. 2020;14(4).

Available:https://doi.org/10.37896/jxu14.4/247

ISSN 1001-2400;1995-2003;

Das M, Nayak S, Mishra SP, Siddique Md. Paradigm shift on environmental sustainability by replacing GGBS in RMC: Industrial waste utilization, Dept of Civil Eng. CUTM, BBSR, Adalaya Journal. 2020;9(3):970-983.

Harichandan B, Mishra SP, Deepak KU, Sahu DK, Mishra S. The non-carbon kaolinite; Part substituent of cement in concrete. Current Journal of Applied Science and Technology. 2022;41(1):1-13.

DOI: 10.9734/CJAST/2022 /v41i131643

Article no.CJAST.84309

ISSN: 2457-102

Apte AD, Tare V, Bose P. The extent of oxidation of Cr(III) to Cr(VI) under various conditions in the natural environment. J Hazard Mater. 2006;128(2-3):164-74.

DOI: 10.1016/j.jhazmat.2005.07.057.

Regan J, Dushaj N, Stinchfield G. Reducing hexavalent chromium to trivalent chromium with zero chemical footprint: Borohydride exchange resin and a polymer-supported base. ACS Omega. 2019;4(7):11554–11557.

Available:https://doi.org/10.1021/ acsomega. 9b01194

Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012;101:133–164.

DOI: 10.1007 /978-3-7643-8340-4_6

Daneshvar N, Salari D, Aber S. Chromium adsorption and Cr (VI) reduction to trivalent chromium in aqueous solutions by soya cake. J Hazard Mater. 2002;94(1): 49-61.

DOI: 10.1016/s0304-3894(02)00054-7

Liang J, Huang X, Yan J, et al. A review of the formation of Cr (VI) via Cr (III) oxidation in soils and groundwater. Sci Total Environ. 2021;774:145762.

Hossini H, Shafie B, Niri AD, Nazari M, Esfahlan AJ, Ahmadpour M, Nazmara Z, et. al. A comprehensive review on human health effects of chromium: Insights on induced toxicity. Environ Sci Pollut Res Int. 2022;29(47):70686-70705.

DOI: 10.1007/s11356-022-22705-6

Mishra S, Bhargava RN. Toxic and genotoxic effects of hexavalent chromium in the environment and its bioremediation strategies. Journal of Environmental Science and Health, Part C. 2016;34:1-32,

DOI: 10.1080/10590501.2015.1096883

Deng Y, Wang M, Tian T, Lin S, Xu P, et al. The effect of hexavalent Cr on the incidence and mortality of human cancers: A meta-analysis based on published epidemiological cohort studies. Front. Oncol. 2019;9:24.

DOI: 10.3389/fonc.2019.00024

Pavesi T, Moreira JC. Mechanisms and individuality in chromium toxicity in humans. J. Appl. Toxicol. 2020;40:1183–1197.

DOI:10.1002/jat.3965

Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021;12: 643972.

DOI: 10.3389/fphar.2021.643972

Prasad S, Yadav KK, Kumar S, Gupta N, Cabral-Pinto MMS, Rezania S, Radwan N, Alam J. Chromium contamination and effect on environmental health and its remediation, sustainable approaches. J Env. Manage. 2021;285:112174.

DOI: 10.1016/j.jenvman.2021.112174

Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S. Chromium toxicity in plants. Environ Int. 2005;31(5):739-53.

DOI: 10.1016/j.envint.2005.02.003

Saud S, Wang D, Fahad S, Javed T, Jaremko M, Abdelsalam NR, Ghareeb RY. The impact of chromium ion stress on plant growth, developmental physiology, and molecular regulation. Front Plant Sci. 2022;13:994785.

DOI: 10.3389/fpls.2022.994785

Zayed AM, Terry N. Chromium in the environment: Factors affecting biological remediation. Plant and Soil. 2003;249: 139–156.

Available:https://doi.org/10.1023/A:1022504826342

Singh R, Gautam N, Mishra A, Gupta R. Heavy metals and living systems: An overview. Ind. Pharmacol. 2011;43:246-53.

Available:https://www.ijp-online.com/text.asp?2011/43/3/246/81505

Naz A, Chowdhury A, Mishra BK, Gupta SK. Metal pollution in water environment and the associated human health risk from drinking water: A case study of Sukinda chromite mine, India. Human and Ecological Risk Assessment: An Int. Journal. 2016;22(7):1433-1455.

DOI: 10.1080/10807039.2016.1185355

M/S Tata steel ltd. Environmental Statement -Sukinda Chromite Mines, M/s Tata Steel Limited for the financial year ending 31st March 2019. Submit: Sukinda Chromite mines Ltd. 2019:1-26.

Dutta K, Ghosh AR. Analysis of physico-chemical characteristics & metals in water sources of chromite mining in Sukinda Valley, Odisha, India. J Env. Biol. 2013;34(4):783-788.

Naz A, Chowdhury A, Mishra BK, Gupta SK. Metal pollution in water environment and the associated human health risk from drinking water: A case study of Sukinda chromite mine, India. Human, and Ecol. Risk Assessment: Taylor & Francis, An Int. J. 2016;22(7):1433-1455.

DOI: 10.1080/10807039.2016.1185355

Nayak, S., Rangabhashiyam S, Balasubramanian P, Paresh Kale. A review of chromite mining in Sukinda Valley of India: Impact and potential remediation measures. Int. J. of Phytoremediation. 2020;22:8:804-818.

DOI: 10.1080/15226514.2020.1717432

EPG, Orissa. A report on the water quality with regards to the presence of hexavalent chromium in Damsala Nala of Sukinda mining area; 2013.

Mishra SP. Stochastic modelling of flow and sediment of the rivers at delta head, East Coast of India. American Journal of Operation Research, Scientific Research. 2017;7(6):331-347.

DOI: 10.4236/ajor.2017.76025

Bolaños-Benítez V, Van Hullebusch ED, Lens PNL, Quantin C, Van de Vossenberg J, Subramanian S, Sivry Y. (Bio), Leaching behavior of chromite tailings. Minerals. 2018;8(6):261. Available:https://doi.org/10.3390/min8060261

Ministry of mines, 2020, 2021. Indian Minerals Yearbook 2020 and 2021, Chromite, (Part- III: Mineral Reviews) 59th Edition, Indian bureau of mines, GOI.

M/s Indian Metals & Ferro Alloys. EIA & EMP Report of Sukinda Mines (Chromite) of Ltd. Prepared by Bhagavati Ana Labs Pvt Ltd. 2017;1-257.

M/S B. C. Mohanty & Sons, 2016. Brief Summary of the Project w. r to Kamarda Chromite Mines (107.24 Ha.), of M/s B. C. Mohanty & Sons Private Limited, Village: Kamarda, Tehsil: Sukinda, Dist: Jajpur, Odisha for Enhancement Production of ROM (Chrome Ore) from 88,000 TPA to 2,00,000 TPA and Chrome Concentrate through COB Plant up to 1,00,000 TPA.

Guin GK. Sukinda chromite mine, modification of scheme of mining & progressive mine closure plan and mining plan. Sukinda Chromite Mine, Tata Steel Limited. 2013;I.

Regn. NO. RQP/ BBS / 044 / 2003 / A

Zayed AM, Terry N. Chromium in the environment: Factors affecting biological remediation. Plant and Soil. 2003;249: 139–156.

DOI: 10.1023/A: 1022504826342

Sinha R, Kumar R, Sharma P, Kant N, Shang J, Aminabhavi TM. Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives. J Environ Manage. 2022;1(317):115356.

DOI: 10.1016/j.jenvman.2022.115356

Lindsay DR, Farley KJ, Carbonaro RF. Oxidation of Cr(III) to Cr(VI) during chlorination of drinking water. J Env. Monit. 2012;14(7):1789-97.

DOI: 10.1039/c2em00012a

Brasili E, Bavasso I, Petruccelli V, et al. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Sci Rep. 2020;10:1920

Available:https://doi.org/10.1038/s41598-020-58639-7

Singh A. Hexavalent chromium: Toxic and genotoxic effects and its bioremediation strategies. Biomed J Sci Tech Res. 2021;35(3):27637–27643.

Mishra H., Sahoo HB. 2013. Environmental Scenario of Chromite Mining at Sukinda Valley – A Review. Int. J. of Env. Eng. & Mngt., 4(4), 287-292, www.ripublication. com/ ijeem.htm

Nayak SR, Kale PB. A review of chromite mining in Sukinda valley of India: Impact and potential remediation measures. Int J Phytoremediation. 2020;22(8):804-818.

DOI: 10.1080/15226514.2020.1717432

Fathima NN, Aravindhan R, Rao JR, et al. Solid waste removes toxic liquid waste: Adsorption of chromium (VI) by iron complexed protein waste. Env. Sci-Tech. 2005;39(8):2804–810.

Liu Y, Ding J, Zhu H, Wu X, Dai L, Chen R, Van der Bruggen B. Recovery of trivalent and hexavalent chromium from chromium slag using a bipolar membrane system combined with oxidation. J Colloid Interface Sci. 2022;619:280-288.

DOI: 10.1016/j.jcis.2022.03.140

de Borja OF, Sammaraie H, Campano C, Blanco A, Merayo N, Negro C. Hexavalent chromium removal from industrial wastewater by adsorption and reduction onto cationic cellulose nanocrystals. Nanomaterials. 2022; 12(23):4172.

Available:hhttps://doi.org/10.3390/nano12234172

Dutta K. Environmental panorama of Sukinda valley – a critical study. International Research, J. of Earth Sci. 2017;5(11):34-37.

Available:http://www.isca.in/ EARTH_SCI/ Archive /v5/i11/4.ISCA-IRJES-2017-034.pdf

Khakmardan S, Doodran R, Shirazy A, Shirazi A. Mozaffari E. Evaluation of chromite recovery from shaking table tailings by magnetic separation method. Open Journal of Geology. 2020;10:1153-1163.

DOI: 10.4236/ojg.2020.1012055

Panda SR, Barik KK. Mishra Siba Prasad, Watershed Management of Joda-Barbil mining area, Odisha, India: A geospatial approach. Current Journal of Applied Science and Technology. 2020;39(31): 105-115.

DOI:10.9734/CJAST/2020/v39i3130995.

ISSN: 2457-1024;

Article no.CJAST.61820;

Mishra SP, Barik KK, Panda SR. Geospatial effect on the mining operation in Joda/Barbil area of Odisha, India. Current Journal of Applied Science and Technology. 2021;40(37):36-55.

Article no. CJAST.76897

ISSN: 2457-1024, 34-55

Dutta K, Ghosh AR. Impact of chromite contamination in the groundwater-surface water and bottom sediment of Damsel Nala of Sukinda valley region in Odisha. Journal of Environmental Biology. 2011,
  • Abstract View: 44 times
    PDF Download: 15 times

Download Statistics

  • Linkedin
  • Twitter
  • Facebook
  • WhatsApp
  • Telegram
Make a Submission / Login
Information
  • For Readers
  • For Authors
  • For Librarians
Current Issue
  • Atom logo
  • RSS2 logo
  • RSS1 logo


© Copyright 2010-Till Date, Journal of Scientific Research and Reports. All rights reserved.