Re-Isolation Methodologies for Recovering Sporulation of Eucalyptus Pestalotiopsis grandis-urophylla Isolates after 14 Months Storage

Main Article Content

Lincon Rafael da Silva
Marina Gabriela Marques
Paulo Henrique Pereira Costa Muniz
Thiago Alves Santos de Oliveira
Elizabeth Amélia Alves Duarte
Fabricio Rodrigues
Solange Xavier dos Santos
Daniel Diego Costa Carvalho

Abstract

After long periods of storage, plant pathogen isolates lose their sporulation capacity. The objective of this study was to evaluate re-isolation methodologies for recovering sporulation of Pestalotiopsis grandis-urophylla isolates after subjection to a long period of storage. Isolates of P. grandis-urophylla were kept for 14 months on Petri dishes with PDA medium at 10°C. After this period, the isolate colonies showed reduced mycelial growth and no sporulation. The isolates were inoculated on healthy Eucalyptus grandis-urophylla leaves, and after ten days they were subjected to three re‑isolation methods: scraping of the lesions (S) removing of injured plant tissue fragments, followed by disinfestation (D) and without disinfestation (WD). Then, the purified isolates were evaluated for the recovery of its sporulation ability. The different methods for re-isolation resulted in the occurrence of differences among the isolates, showing that sporulation is an isolate-dependent feature. The three methods (S, WD and D) allowed the sporulation recovery of P. grandis-urophylla, even after these isolates have been subjected to 14 months.

Keywords:
Pathogenicity, mycelial growth, fungi storage.

Article Details

How to Cite
Silva, L. R. da, Marques, M. G., Muniz, P. H. P. C., Oliveira, T. A. S. de, Duarte, E. A. A., Rodrigues, F., Santos, S. X. dos, & Carvalho, D. D. C. (2021). Re-Isolation Methodologies for Recovering Sporulation of Eucalyptus Pestalotiopsis grandis-urophylla Isolates after 14 Months Storage. Journal of Scientific Research and Reports, 27(1), 68-77. https://doi.org/10.9734/jsrr/2021/v27i130350
Section
Original Research Article

References

1. Santos BM, Zibrandtsen JFS, Gunbilig D, Sørensen M, Cozzi F, Boughton BA, Heskes AM, Neilson EHJ. Quantification and localization of formylated phloroglucinol compounds (FPCs) in Eucalyptus species. Front Plant Sci. 2019;10:1-14.
Available:https://doi.org/10.3389/fpls.2019.00186
2. Nóia Júnior RS, Schwerz F, Safanelli JL, Rodrigues JC, Sentelhas PC. Eucalyptus rust climatic risk as affected by topography and ENSO phenomenon. Australas Plant Pathol. 2019;48(2):131-141.
Available:https://doi.org/10.1007/s13313-018-0608-2
3. Soares ID, Auer CG, Santos AF, Tambarussi EV, Rezende EH, Valle Coelho TA, Duin IM. Fungi associated with leaf spot in Eucalyptus benthamii maiden et cambage in the southern region of Brazil. BIOFIX Scientific Journal. 2017;2(2):32-37. Available:https://doi.org/10.5380/biofix.v2i2.54469
4. Zhao W, Zheng Z, Zhang J, Roger S, Luo X. Evaluation of the use of eucalyptus to control algae bloom and improve water quality. Sci Total Environ. 2019;667:412-418. Available:https://doi.org/10.1016/j.scitotenv.2019.02.276
5. Salla VP, Campos T, Borin MSR, Mazaro SM, Vismara LS. Incidence and severity of fungi in species of Eucalyptus sp. Appl. Res & Agrotec. 2016;9:79-85.
Available:https://doi.org/10.5935/PAeT.V9.N3.09
6. Coutinho TA, Brady CL, Van Der Vaart M, Venter SN, Telechea N, Rolfo M, Perez C, Wingfield MJ. A new shoot and stem disease of eucalyptus species caused by Erwinia psidii. Australas. Plant Pathol. 2011;40(1):55-60.
Available:https://doi.org/10.1007/s13313-010-0013-y
7. Lana VM, Mafia RG, Ferreira MA, Sartório RC, Zauza EAV, Mounteer AH, Alfenas AC. Survival and dispersal of Puccinia psidii spores in eucalypt wood products. Australas plant pathol. 2012;41(3):229-238.
Available:https://doi.org/10.1007/s13313-011-0112-4
8. Chen Y, Zeng L, Shu N, Jiang M, Wang H, Huang Y, Tong H. Pestalotiopsis-like species causing gray blight disease on Camellia sinensis in China. Plant Dis. 2018;102(1):98-106. Available:https://doi.org/10.1094/PDIS-05-17-0642-RE
9. Lazarotto M, Muniz MFB, Poletto T, Dutra CB, Blume E. First report of Pestalotiopsis clavispora causing leaf spot of Carya illinoensis in Brazil. Plant Dis. 2012;96(12):18-26. Available:https://doi.org/10.1094/PDIS-07-12-0615-PDN
10. Teramoto A, Parisi MCM, Cunha MG. Physiological characterization of Corynespora cassiicola isolates. Trop Plant Pathol. 2013;38(4):313-322.
Available:https://doi.org/10.1590/S1982-56762013005000012
11. Paul JS, Tiwari KL, Jadhav SK Long term preservation of commercial important fungi in glycerol at 4 °C. Int J Biol Chem. 2015;9(2):79-85.
Available:https://doi.org/10.3923/ijbc.2015.79.85
12. Aparecido CC, Rosa EC, Costa IAM, Jorge CM. Evaluation of different methods for the preservation of phytopathogenic fungi. Biológico. 2018;(1):1-7.
13. Montarry J, Hamelin FM, Glais I, Corbière R, Andrivon D. Fitness costs associated with unnecessary virulence factors and life history traits: evolutionary insights from the potato late blight pathogen Phytophthora infestans. BMC Evol Biol. 2010;10:283.
Available:https://doi.org/10.1186/1471-2148-10-283
14. Evison SEF, Foley K, Jensen AB, Hughes WOH. Genetic diversity, virulence and fitness evolution in an obligate fungal parasite of bees. Int J Evol Biol. 2015;28(1):179-188.
Available:https://doi.org/10.1111/jeb.12555
15. Carvalho DDC, Oliveira RM, Marques MG, Milan MD, Pinho DB, Dianese EC. Molecular, morphophysiological and pathogenic characterization of eucalypt Pestalotiopsis grandis-urophylla isolates, a new species. Trop Plant Pathol. 2019;44(2):132-139. Available:https://doi.org/10.1007/s40858-019-00277-0
16. Passador MM, Pires GCC, Finatti D, Aparecido CC, Figueiredo MB. Viability and pathogenicity of fungi cultures maintained in “Mário Barreto Figueiredo” fungi collection. Biológico. 2010;72(1):51-55.
17. Costa EC, Teixeira MFS, Dantas TVM, Melo VSP, Araujo SAC, Rolim BN. Microbiological samples storage and preservation principles. Ciência Animal. 2009;19(2):111-122.
18. Carvalho DDC, Alves E, Batista TRS, Camargos RB, Lopes EAGL. Comparison of methodologies for conidia production by Alternaria alternata from citrus. Braz J Microbiol. 2008;39(4):792-798.
Available:https://doi.org/10.1590/S1517-83822008000400036
19. Ferreira DF. Sisvar: a computer statistical analysis system. Cienc Agrotec. 2011;35(6):1039-1042.
Available:https://doi.org/10.1590/S1413-70542011000600001
20. Farr DF, Rossman AY. Fungal databases, US. National fungus collections, ARS, USDA; 2014.
Accessed April 05, 2017.
Available:https://nt.ars-grin.gov/fungaldatabases/
21. El-Argawy E. Characterization and control of Pestalotiopsis spp. the causal fungus of guava scabby canker in el- beheira governorate, Egypt. Int J Phytopathol. 2015;4(3):121-136.
22. Zhang M, Wu HY, Tsukiboshi T, Okabe I. First Report of Pestalotiopsis microspora causing leaf spot of hidcote (Hypericum patulum) in Japan. Plant Dis. 2010;94(8):1064-1064.
Available:https://doi.org/10.1094/PDIS-94-8-1064B
23. Jeewon R, Liew ECY, Hyde KD. Phylogenetic relationships of pestalotiopsis and allied genera Inferred from ribosomal DNA sequences and morphological characters. ‎Mol phylogenetics evol. 2002;25(3):378-392.
Available:https://doi.org/10.1016/S1055-7903(02)00422-0
24. Keith LM, Velasquez ME, Zee FT. Identification and characterization of Pestalotiopsis spp. causing scab disease of guava, Psidium guajava in Hawaii. Plant Dis. 2006;90(1):16-23.
Available:https://doi.org/10.1094/PD-90-0016
25. Dijksterhuis J. Fungal spores: Highly variable and stress-resistant vehicles for distributionand spoilage. Food Microbiol. 2019;81:2-11.
Available:https://doi.org/10.1016/j.fm.2018.11.006
26. Lazarotto M, Bovolini MP, Muniz MFB, Harakawa R, Reiniger LRS, Santos AF. Identification and characterization of pathogenic Pestalotiopsis species to pecan tree in Brazil. Pesq Agropec Bras. 2014;49(6):440-448.
Available:https://doi.org/10.1590/S0100-204X2014000600005
27. Cardoso GD, Barreto AF, Araújo E, Almeida FA, Carvalho RAG. Ethiology and progress of the pestalotiopsis leaf spot in coconut (Cocos nucifera L.) plantations at the district of São Gonçalo, Sousa, Paraíba State. Rev. Bras. Fruticultura. 2003;25(2):335-336. Available:https://doi.org/10.1590/S0100-2945200hh3000200039
28. Oliveira TN, Santos MVF, Lira MA, Mello ACL, Ferreira RLC, Lira Júnior MA, Silva NGM. Estimative of repeatability coefficients, for leaf spot ocurrence in Pennisetum sp. clones. Arch Zootec. 2011;60:797-808.
29. Carneiro AA, Gomes EA, Guimarães CT, Fernandes FT, Carneiro NP, Cruz I. Molecular characterization and pathogenicity of isolates of Beauveria spp. to fall armyworm. Pesq. Agropec. Bras. 2008;43(4):513-520.
Available:https://doi.org/10.1590/S0100-204X2008000400010
30. Kaur G, Padmaja V. Evaluation of Beauveria bassiana isolates for virulence against Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) and their characterization by RAPD-PCR. Afr J Microbiol Res. 2008;2(11):299-307.
31. Silva HR, Pozza EA, Souza PE, Ferreira MA, Freitas AS, Moreira SI. Cercospora leaf spot in Toona ciliata: Epidemiology and infection process of cercospora cf. Alchemillicola. For pathol. 2018;48:1-8.
Available:https://doi.org/10.1111/efp.12451
32. Couto FA, Monteiro MCP, Da Silva DM, Cirillo MA, Batista LR. Biodiversity of filamentous fungi in coffee beans grown in an organic and conventional system. Coffee Science. 2013;8(2):132-139.
33. Chen F, Lu L, Wang D, Wang Y, Ni H, Du Z. Biological characterization and genetic diversity analysis of two species of Pestalotiopsis causing twig dieback of Myrica rubra. Eur J Plant Pathol. 2013;136(4):737-747.
Available:https://doi.org/10.1007/s10658-013-0203-x
34. Ren HY, Li G, Liang S, Yang G, Zheng X, Wei J, Qi X. Effects of culture media, carbon and nitrogen sources and environmental factors on mycelial growth and sporulation of Pestalotiopsis microspora strains, the agent of bayberry twig blight in Southern China. Asia Life Sci. 2013;22(2):713-727.