Physiological Changes in Nickel-exposed Nile Tilapia Oreochromis niloticus during Exposure and Recovery Periods

K. U., Sheethal

College of Fisheries, Mangaluru, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, India.

Prakash Nadoor

Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, Karnataka, India.

S. R. Somashekara

College of Fisheries, Mangaluru, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, India.

U. A. Suryawanshi

College of Fishery Science, Nagpur Maharashtra Animal and Fisheries Sciences University, Nagpur, India.

K. R. Amogha

College of Fisheries, Mangaluru, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar, India.

P. A. Telvekar

College of Fishery Science, Nagpur Maharashtra Animal and Fisheries Sciences University, Nagpur, India.

S. T. Shelke

College of Fishery Science, Nagpur Maharashtra Animal and Fisheries Sciences University, Nagpur, India.

J. G. K. Pathan *

College of Fishery Science, Nagpur Maharashtra Animal and Fisheries Sciences University, Nagpur, India.

*Author to whom correspondence should be addressed.


Abstract

Heavy metals are a significant problem in aquatic ecosystems as they are toxic and tend to accumulate, immediately affecting fish physiology. The present investigation was carried out to evaluate the sub-lethality of Nickel chloride on fingerlings of Nile tilapia, Oreochromis niloticus on long-term exposure to it is below safe concentrations1/fifth (9.39 ppm) and 1/10th (4.69 ppm). The physiological studies revealed a significant reduction in Oxygen Consumption Rate (OCR), Ammonia-N Excretion Rate (AER), Oxygen Rate (O: R) and Food Consumption Rate (FCR) and behavioural changes during accumulation and depuration phases. Limited recovery was obtained in all the physiological parameters after depuration for 28 days from the end of the accumulation period.

Keywords: Nickel, Oreochromis niloticus, physiology, exposure, recovery, metallic contaminants


How to Cite

Sheethal, K. U., Nadoor , P., Somashekara , S. R., Suryawanshi , U. A., Amogha, K. R., Telvekar , P. A., Shelke, S. T., & Pathan , J. G. K. (2024). Physiological Changes in Nickel-exposed Nile Tilapia Oreochromis niloticus during Exposure and Recovery Periods. Journal of Scientific Research and Reports, 30(6), 333–340. https://doi.org/10.9734/jsrr/2024/v30i62048

Downloads

Download data is not yet available.

References

Lee SJ, Mamun M, Atique U, An KG. Fish tissue contamination with organic pollutants and heavy metals:Link between land use and ecological health. Water. 2023;15(10):1845.

Vinodhini R, Narayanan M. Bioaccumulation of heavy metals in organs of freshwater fish Cyprinius carpio. Int. J. Environ. Sci. Tech. 2008;5(2):179-182.

Kumar V, Umesh M, Shanmugam MK, Chakraborty P, Duhan L, Gummadi SN, Dasarahally Huligowda LK. A retrospection on mercury contamination, bioaccumulation, and toxicity in diverse environments: current insights and future prospects. Sustainability. 2023;15(18):13292.

Censi P, Spoto SE, Saiano F, Sprovieri M, Mazzola S, Nardone G, Di Geronimo SI, Punturo R, Ottonello D. Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand. Chemosphere. 2006;64:1167-1176

Zhang P, Yang M, Lan J, Huang Y, Zhang J, Huang S, Ru J. Water quality degradation due to heavy metal contamination: Health impacts and eco-friendly approaches for heavy metal remediation. Toxics. 2023;11(10):828.

Velez D, Montoro R, Arsenic speciation in manufactured seafood products: A review. J. food Protect. 1998;9(61):1240-1245.

MacFarlane GB, Burchettt MD. Cellular distribution of Cu, Pb, and Zn in the Grey Mangrove Avicemnia marina (Forsk.). Vierh Aquatic Botanic. 2000;68:45-59

US, EPA. Ambient water quality criteria for nickel. EPA440/5-80-060. Office of Water Regulations and Standards. Washington, DC; 1980.

US, EPA. Ambient water quality criteria for nickel – EPA-440/5-86-004. Office of Water Regulations and Standards. Washington, DC. 1986.

Eisler R. Nickel hazards to fish, wildlife and invertebrates: A synoptic review. Biological Science Report USGS/BRD/BSR-1998-0001, Laurel, MD. 1998.

Vieira LR, Gravato C, Soares AMVM, Morgado F, Guilhermino L. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: Linking biomarkers to behaviour. Chemosphere. 2009;76(10):1416–1427

Allen Heath G. Water pollution and fish physiology. Edition 2nd. Lewis publishers. 1995; 6-7

Viella S, Ingrossi L, Lionetto M, Schettino T, Zonno V, Stroelli C. Effect of cadmium and zinc on the Na/H exchanger on the brush border membrane vesicles isolated from eel kidney triangular cells. Aquat.Toxicol. 199948:25-36

Lushchak VI, Matviishyn TM, Husak VV, Storey JM, Storey KB. Pesticide toxicity: a mechanistic approach. EXCLI J. 2018;8 (17):1101-1136.

Sheehan PJ, Miller DR, Butler GC, Bourdea UP. Effects of pollutants at ecosystem level. Scope 22. Chichester: Wiley &Sons Ltd; 1984.

ANON, APHA. Standard methods for the examination of water and wastewater. 21stEdn., Washington, D.C. 2005.

Finney DJ. Probit Analysis. 1st Edn., Cambridge University Press, Cambridge, 1971ISBN-10: 0521135907, 272.

Zhen Y, Aili J, Changhai W. Oxygen consumption, ammonia excretion, and filtration rate of the marine bivalve Mytilus edulis exposed to methamidophos and omethoate. Marine and Freshwater Behaviour and Physiology. 2010;43(4): 243-255.

Solorzano L. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnol. Oceanogr. 1969;14:799

Ramírez JFP, Amanajás RD, Val AL. Ammonia Increases the Stress of the Amazonian Giant Arapaima gigas in a Climate Change Scenario. Animals. 2023; 13(12):1977.

Bayne BL, Brown DA, Burns K, Dixon DR, Ivanovici A, Livingstone DR, Lowe DM, Moore MN, Stebbing ARD, Widdows J. The effects of stress and pollution on marine animals. Praeger Scientific, New York. 1958;384

Broeck GD, Vlaeminck A, Blust R. Effects of sub-lethal copper exposure on copper accumulation, food consumption, growth, energy stores, and nucleic acid content in common carp. Arch. Environ. Contam. Toxicol. 1997;33:415-422

Jadhav SS, Surve PR, Gundile MG. Impact of mercuric nitrate on the oxygen consumption of freshwater crab, Barytelphusa Guerini. Ecology Environment and Conservation. 2006;12 (4):749.

Gokul T, Kumar KR, Prema P, Arun A, Balaji P, Faggio C. Particulate pollution and its toxicity to fish: An overview. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 2023;109646.

Khoshnood Zahra. Effects of environmental pollution on fish: A short review. Transylv. Rev. Syst. Ecol. Res. 2017;19(1):49-60.

Padmanabha A. Physiological and Biochemical Responses in Tilapia (Oreochromis mossambicus) Exposed to Cadmium and Chlorpyrifos (Doctoral dissertation, Karnataka Veterinary, Animal and Fisheries Sciences University, Bidar); 2015.

Usharani A, Ramamurthi R. Effects of sublethal concentration of cadmium on oxidative metabolism in the freshwater teleost, Tilapia mossambica. Indian J. Comp. Anim. Physiol. 1987;5 (2):71-80.

Al-Yakoob S, Bou-Oluyan AH. and Bahlool, M. Trace metals in gills of fish from the Arabian Gulf. Bull. Environ. Contam. Toxicol. 1994; 53(5):718-752.

Padmanabha A, Reddy HRV, Muttappa Khavi, Prabhudeva KN, Rajanna KB, Chethan N. Acute effects of chlorpyrifos on oxygen consumption and food consumption of freshwater fish, Oreochromis mossambicus (Peters). Inter. J .of Recent Scien. Resea. 2015;6:3380-3384

Grinwis GCM, Boonstraa, Van Den Brandhof FJ, Dormans J, Engelsma M, Kuiper RV, Vanloveren H, Wester PW, Vaal MA, Vethaak AD, Vos JG. Short-term bis (tri-n-butyltin) oxide toxicity in flounder (Platichthysflesus). Pathology and immune function. Aquat. Toxicol.1998;42:15-36.

Hartl MGJ, Hutchinson S, Hawkins L. Organotin and osmoregulation: Quantifying the effects of environmental concentrations of sediment-associated TBT and TPhT on the freshwater adapted European flounder, Platichthys flesus. J. Exp. Mar. Biol. Ecol. 2001;256;267-78.

Patricia AW, Land MD. Urea Production and Transport in Teleost Fishes,Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology.1998;119(1):47-54.

Deboeck G, Desmet H, Blust R. The effect of sub-lethal levels of copper on oxygen consumption and ammonia excretion in the common carp Cyprinus carpio (L.). Aquat. Toxicol. 1995;32:127-141

Parveen A, Javed M. Effect of water-borne copper on the growth performance of fish Catla catla. Int. J. Agric. Bio.2010;12:950-952

Jisha J, Hari Sankar HSA, Smitha BV, Aniladevi Kunjamma KPA, Remya V. Babu Philip. Cadmium ion-induced changes in the protein catabolism of Oreochromis mossambicus. International Journal of Scientific and Research Publications. 2013;3:1-8

Grosell M, Nielsen C, Bianchini A. Sodium turnover rate determine sensitivity to acute copper and silver exposure in freshwater animals. Comp. Biochem., Physiol. C. 2002;133:287–303.

Jadhav SS, Shinde VD, Sirsat D,. Katore BP, Ambore NE. Impact of Mercuric Nitrate on the Oxygen Consumption of Fresh Water Crab. Barytelphus aguerini. Rec Res Sci Tech. 2011;3:50-51.

Pillai Bindu R, Diwan AD. Effects of acute salinity stress on oxygen consumption and ammonia excretion rates of the marine shrimp Metapenaeus monoceros. Journal of Crustacean Biology. 2002;22(1):45-52.

Xuan R, Wu H, Lin C, Ma D, Li Y, Xu T, Wang L. Oxygen consumption and metabolic responses of freshwater crab Sinopotamon henanense to acute and sub-chronic cadmium exposure. Ecotoxicology and Environmental Safety. 2013;89:29-35.

Ali A, Al-Ogaily S M, Al-Asgah NA, Gropp J. Effect of sub-lethal concentrations of copper on the growth performance of Oreochromis niloticus. Jour. of Applied Ichthyology. 2003;19(4):183-188.

Halappa R, David M. Behavioural responses of the freshwater fish, Cyprinus carpio (Linnaeus) following sublethal exposure to chloropyrifos. Turk. J. Fish. Aquat. Sci. 2009;9:233-238.

Gerking SD. Feeding ecology of fish. Elsevier; 2014.

Heath AG. Water Pollution and Fish Physiology. CRC Press, Florida, USA. 1987:245.

Sharma M. Behavioural responses in effect to chemical stress in fish: A review. International Journal of Fisheries and Aquatic Studies. 2019;7(1):01-0

Svecevièus G. Avoidance response of rainbow trout Oncorhynchus mykiss to heavy metal model mixtures. A comparison with acute toxicity tests. Bull. Environ. Contam. Toxicol. 2001; 67:680-687

Khunyakari RP, Vrushali T, Sharma RN, Tare V. Effects of some Trace Heavy Metals on Poecilia reticulate, J. of Envi. Bio. 2001;22(2):141- 144.

Yaji AJ, Auta J, Oniye SJ, Adakole JA. Usman JI. Effects of Cypermethrin on behaviour and biochemical indices of freshwater fish Oreochromis niloticus. EJEAFChe. 2011;10(2):1927-1934

Janardhana Reddy S, Reddy DC. Impact of cadmium toxicity on behavioural and haematological biomarkers of freshwater fish, Catla catla. Int. J. Bioassays. 2013;02 (09):1199-1204.

Katja Schmidt, Georg BO, Staaks Stephan Pflugmacher, Christian EW Steinberg. Impact of PCB mixture (Aroclor 1254) and TBT and a mixture of both on swimming behaviour, body growth and enzymatic biotransformation activities (GST) of young carp (Cyprinus carpio). Aquatic Toxicology. 2005;71(1):49-59.

Patro L. Toxicological effects of cadmium chloride on Acetylcholinesterase activity of freshwater fish, Oreochromis mossambicus Peters. Asian J. Exp. Sci. 2006;20(1):171-180